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1.1 Program Background

Linear acceleration forces are encountered frequently in high-performance

aircraft during rapid turns and pullouts from dives. It has long been recognized

that these forces subject the pilot to a psycho-physiological stress that could

degrade his performance. The problems associated with acceleration forces acting

on pilots became even more pronounced with the development of the supersonic high-

performance aircraft.

There is a wide spectrum of acceleration environments that may be encountered

in a flying aircraft; the direction of the acting acceleration constitute its major

distinctive characteristic. A comparative nomenclature for the various conventions

used to describe the acceleration environment, largely referred to as G, may be

found in the literature (Roth et al. [2]). The subject of the current study was the

special linear acceleration which is known as positive acceleration, i.e., an accelera-

tion acting in the head-to-foot direction. Often, it is referred to as +G or vertical
z

accelerat ion.

A vast amount of research has dealt with the effects of linear accelerations

on pilots. These studies can be divided into two categories: Elementary research

pertaining to the psycho-physiological response of the human under G-stress, and

research dealing directly with the effects of sustained acceleration on human perfor-

mance, as expressed explicitly by degraded tracking capabilities and loss of flight

control. A survey of these research efforts follows in a subsequent section.

According to Brown [lJ, pilots in the Schneider Trophy Race of 1930 were the first
to have experienced the visual effects of sustained acceleration.
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IHestv pa.st rcsvekrcll efforts were most lv empi rical. Some descript ive models of

human re.spOn at' to i;-st reS a have been Poustula ted, uisuallIy via experimental data reduc-

ton ind st it is t i cl anal vs is t ecmn iques . Ini order to comiIIetnent these research

el t 1t , And to 0vi u',1ate, p1i lot performauico ider G-st ress analyti callyv, iformat ive

perO17 rm11.11nt ModelI hils beCeme a devel1opmentalI goal . That is, an analytical model,

,I p red i cting human per formance dec rements tider (;-st ress is sought. This

tVpc Ot t reritleModel c'an be til ized in a variety of applications, such as

the opt imnizat ion of f iglrter-cockpi t design, or the dlefinit ion of ai rcraft state

.iUgmeo t t ion reqJuirements.

A 'rdingl v a research program -supp(,rted by the UISAF and performed conc ur rent Ilv

.i t rce Aerospace Med ical Nes:,arch LaboratorTy and at CYBERLAII the

I'nivers it v of Connecticut, was undertaken. Through this combined experimental /analyt ical

prtgrim, we have sought to invest igate and model the fol lowing issues:

11 Cht< effe'cts ot G-stress on humian per for.iiance in a lOngitudinal air-to-

air compensatory tracking task. Srecifically, experiments were carried

out with closed-loop sustained accel erat ions where the subject's pitch

rate commands Were also the driving signals to the centrifuge on which

thle positive acceleration was simulated.

2) lh t.t I ects of G-stress on pilot performance of a secondary__task. AlonoC

withI the longitudinal air-to-air tracking uinder G-stress, the subjects

pert ormed a lateral tracking tas;k as well. This task represented essen-

t iai I Iv %.r si dc-task as there were no target aircraft motions in tile

ior izontal plane; thle tracking , error was, induced sol clv by thle pilot's

invtnluntairv roll Commands. The experimenital results obtained at AMRI. show

a significant degradation in performing this secondary task when under

(;-stress. Our analytical ef fort,, duplicate these reCsul ts", thuIs val idatinog

the pert ormance model that has heen developed.



(3) Changes in pilot describing function when operating undr G-stress. In

the second year of the project a new set of experiments was devised.

These experiments involved steady-state tracking under C-stress and they

facilitated frequency domain analysis of human response. Both the experi-

mental and the analytical phase of this work explore the chan,es in the

pilot transfer function (between the observed tracking kerror and the

control stick input) under sustained G-stress.

(4) Changes in tracking scores and pilot's input-uncorrelated control

(remnant). One facet of performance-degradation under G-stress is higher

RMS values of tracking error and of control remnant. It is shown by model-

data comparison that the performance-model parameters are perturbed from

their nominal values when G-stress is introduced.

(5) Model parameters. A comprehensive identification program was developed at

CYBERLAB and greatly facilitated the development of the G-model. The

algorithm was implemented in software on our PDP 11/60 computer and

provided a mechanized, efficient and objective means for identifying the

values of the model parameters.

Prior to addressing these sub-tasks, a literature survey pertinent to the effects

of sustained accelerations on human beings was undertaken.

1.2 Review of Physiological and Tracking Performance under Sustained Accelerations.

1.2.1 Cardiovascular Response: Perhaps the most fundamental of a person's

physiological response to sustained positive G -stress is the increase in thez

hydrostatic pressure gradient in the vascular system. The blood, being the most

mobile tissue in the human body, is shifted from the upper part ' of the body,

notably the head, and is concentrated in the abdomen and the lower extremities.

These observations were recognized as a serious problem by Code et ,l 1 3,

and by Wood et al. [41, and further confirmed by Lindberg and Wood 151, a d

3I
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Fraser [6]. These articles report a consistent pattern of changes to the cardio-

vascular system when subjected to C-stress. According to these studies, there

are two distinct periods in the cardiovascular response to positive acceleration

with onset rate of about I G/Sec: (1) a period of progressive failure, and (2)

a subsequent period of compensation. During the cardiovascular failure the

following phenomena occur:

1. Decrease in arterial pressure at head level;

2. Increase in arterial and venous pressures at the lower extremities;

3. Increase in intra-abdominal and intrarectal pressures (approximately

linear with CZ) ;

4. Increase in heart rate (this observation was also ascertained by Little

et al. [7], and by Smedal et al. [81, ithough the latter considered

mainly linear acceleration in the transverse direction);

5. Decrease in ear-blood volume;

6. Decrease in the arterial pressure pulse amplitude at ear level;

7. Severe interference with blood-tissue oxygenation, vision, cercbral

activity and nervous system functions.

Following this period (- 7 sec) is a subsequent period of compensations.

Pressor reflex triggered by the fall in arterial pressure in the carotid sinus

initiates partial recovery; it produces hypertension at the heart level that

brings the hydrostatic pressure distribution in the vascular system close to

normal levels. These dramatic changes in the cardiovascular system profoundly

affect other physiological systems, as described below:

1.2.2 Vision: Human visual capabilities are extremely succeptible to variations

in the eye blood supply. Degradation of vision is further agravated by the

additional reduction in blood circulation in the eves due to changes in the

intraocular pressure gradient. The gross effects of positive sustained accelera-

tion on vision are as follows [9]:

9



1. An immediate consequence of decrement in the eye blood supply is
ret inal hypoxia. Photographs of the retina under sustained positive

acceleration can be found in an article by Newson and Leverett [10];

2. (Cro,,s limitations in visual fields: tunnel vision (los , of peripheral
vision), greyout, blackout. This, too, is a direct result of the
reduction of blood circulation in the eve. This phenomenon has been

observed and reported by many researchers (Wliite 11l], York [12]

et al.);

3. Impairment of visual accuitv, as reported by Frankenhaeuser [13], White

and Jorve [14], and others;

4. Increase in brightness discrimination thresholds, reported by Braunstein

and White [15];

5. It has been observed by Smedal et al. (8] that pupillary dilation occurs
with the loss of peripheral vision.

6. The oculomotor mechanism is affected. According to White and Monty
[16] limited ocular mobility, under sustained positive acceleration,

has been observed due to mechanical changes in eye orbital tissues.

These limitations can be overcome (with considerable effort), but may

result in ataxic eye movements.

7. Smedal et al. [8] furnished photographs of the cornea, under transverse
acceleration. It is evident that it is mechanically deformed, resulting

perhaps in blurred vision.

1.2.3 Pulmonary-Respiratory Response: Physiological phenomena related to pro-

longed accelerations occur in the pulmonary and respiratory systems. Along with

the increase in the pressure differences in the vascular system, there is an

independent increase in the arterial and venous pressure gradients along the

lungs' base-to-apex axis. These findings are mentioned by Lindberg and Wood [5]

and Fraser [6]. This increase is followed by hypoxemia, which increases in

severity with repeated exposures to vertical G, as reported by Barr [171.

Lindberg and Wood [5] observed that displaced internal organs, under sustained

positive G, pull the diaphragm downward, causing difficulties in breathing. York

et al. [12] and Smedal et al. [8] reported evident cases of dyspnea (shortness

,i breath) under transverse accelerations (+G x). Smedal et al. [8] also

reported reduction in the vital capacity, increase in respiratory rate, diminished

alveolar ventilation (hypoxia) and hypercapnfa.

1.2.4_ Psychomotor Performance: It Is quite obvious that under sustained

acceleration, motor performance (as expressed in manual movements and manipula-

10



tion tasks) would be disturbed. Indeed, Brown and Lechner, in their survey of

research, report changes in the forces that both arms can exert when under ;-

stress [1]. Canfield et al. [18] conducted experiments proving that movement

time and reaching errors increase with increase in G. Similar r.sults were

shown by Cohen [19,20], Kaehler and Meehan [211, Little et al. [7], and

Frankenhaeuser [13].

An increase in human reaction time to various stimuli comprise another

symptom of sustained acceleration. These findings are reported by several re-

searchers (Frankenhaeuser [13], Canfield et al. [22,23], Kaehler and Meehan

[211.)

1.2.5 Other: The following are among some other side effects of positive G:

1. Degradation in intellectual performance, resulting probably from
acceleration effects on the central neural system (Grether [9],
Frankenhaeuser [13], Ross and Chambers [24], Miller et al. [25]).

2. Variations in time perception with different levels of G (Frankenhaeuser
[131).

3. Effects on the vestibular, kinesthetic and proprioceptive senses
(Brown and Lechner [1]). These are attributed mainly to the centrifu-
gation side effects, and are usually not present during linear accelera-
tion in real flight situations.

1.2.6 Tracking Performance

It is our conviction that some, if not most, of the psycho-physiological

responses to sustained positive acceleration lead ultimately to variations in

tracking task performance. It was necessary, therefore, to review the findings

related to this problem.

First reports concerning tracking performance and flight control did not

appear, as noted by Grether [9], until 1958. Since then, research in this area

has been extensive, although no modeling efforts using modern control theory

have ever been attempted. The majority of these studies has been oriented toward

transverse (+G ) direction. Some studies, however, do deal with tracking perfor-

mance (not necessarily air-to-air tracking) under +G stress.z
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Brown and Collins 1261 and Brown [271 pioneered in closed-loop centri-

fuge simulation of air-to-air tracking tasks. They found a significant increase

in what they called "average tracking scores," mostly in the longitudinal axis,

when performing under vertical acceleration stress. Piranian [28] and Smiles

1291 aLso reported that sustained +(; up to 6C, had appreciable effects, degrading

air-to-air tracking performance. Similar results, for an open-loop centrifuga-

tion with various levels of +G Zin pursuit tracking experiments were reported

by Fletcher et al. [301. Kaehier [311, Little et al. [7], and Middleton et al.

[32] conducted various tracking experiments and, although they considered trans-

verse accelerations only, their results generally agree with the +G zexperiment

results.

Creer et al. 1331 conducted tracking experiments that simulated a re-entry

vehicle piloting task. One of their findings was that an increase in tracking

deficiency occurred when performing under +G zacceleration, vs. +G xor -G

stress conditions, In addition, they observed a marked deterioration in pilot

tracking performance during the onset of the acceleration, i.e., during active

. They explained this by "vertigo sensations caused by the angular rotations

ot the centrifuge gondola as the centrifuge was brought up to the desired

operating speed."

There is a general agreement among the various reports, relating to the

effects of acceleration feedback on tracking performance. This type of

informational feedback is usually categorized as motion cues. Chambers [34]

reported a noted improvement in performance when the centrifuge was engaged in

a closed-loop operation vs. static conditions. However, this was found for low

levels of acceleration only. Brown and Collins [261 reported pronounced improve-

ment in dynamic vs. static tracking scores when a coordinated flight simulation

was employed. Guercio and Wall [351 also emphasize the importance of congruent

12



motion in compensatory tracking. They showed that the presence of motion cues

resulted in lower tracking errors.

1.3 Experimental Phase

Experiments investigating the effects of positive acceleration on pilots were

conducted as early as the mid 1930's. These studies were carried out in real aircraft.

Continuing research interests motivated the construction of the first human centrifuge

systems, for aviation studies, in the U.S. and in Germany. The basic human centrifuge

is a gimbal-mounted cab at the end of a rotating arm. The cab is free to rotate,

independently of the rotating arm, in two axes. It is possible, therefore, for a pilot

seated in the cab to perform a task while subjected to a wide variety of acceleration

patterns. Later models of the human centrifuge were able to replicate air-to-air

combat situations successfully. A detailed description of a human centrifuge can be

found in the literature [4,26].

One way of inducing a sustained positive (z-axis) acceleration on a centrifugated

subject is to spin the apparatus around the central axis of rotation, while tilting

the cab inward. This is shown in Figure 1.

0HUMAN

+Gz

HUMAN CENTRIFUGE

Fig 1 POSITIVE ACCELERATION INDUCED ON A CENTRIFUGED SUBJECT
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In order to achieve the desired (or conmmanded) vortical acceleration, the angle i

and the radial velocitv ,) are adjusted according to equations 1.1-1.2, R being the

radius of rotation:

R cos z + g sinL =t (1.1)
z

,,2R sinx + g cosa = 0 (1.2)

This is the technique employed in the high-(; experiments that were conducted on the

Dvnamic Environment Simulator (DES) facility at the Air Force Aerospace ledical

s,,rch Laboratory.

fho AMRL experiments simulated an air-to-air combat scenario. The centrifuged

subjects wcre instroCted to track a stvlized target aircraft image using a cross-hair

reticle sight. The target motion followed either :1 predetermined or a pseudo-random

pattern in either the longitudinal or the lateral plane. The closed-loop configura-

tion of the tracking task is schematically depicted in Figure 2.

TARGET INPUT

CONTROLLED I - IPA

M I IP U TORELEMENT

CONTROL

INPUT

_NPUT_ _ HUMAN OBSERVATIONS

OPERATOR (TRACKING ERROR)

Fiq. 2 CLOSED-LOOP TRACKING CONFIGURATION
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In order to segregate the effects that G; force.: hav. on ti. pilot 's trackingz

performance, two experimental conditions are employed. In the first case, denoted

here as static-(,, the sUhbjects tracked the target with the centrifuge at rest. In

the second e xper imental condition, denoted here as dynamic-6, the DES

was in motion. in addition, a third condition was included in one set of experiments

(hilap Ler I). Ill these experi.ments the ctloa aiVe C-effects were investigated. Thus,

every" -stress run was immediatelv followed bv a static tracking session. These

were denoted as post-static runs.

The recorded data included the time histories of tracking errors, the subject-

commanded and attained-C, his control inputs and other auxiliary variables. In addition,

physiological variables were recorded, heart rate, systolic and diastolic pressures,

etc. The raw data analysis included across-subject ensemble averaging and FFT analysis

on stationary data.

A detailed description of the experimental program as well as of the data

analysis techniques involved follows in Sections 2.1 and 3.1.

1.4 Modelin Conside rat ions

The modeling efforts in the present study have been based upon the well-known

Optimal Control Model (0CM) (Kleinman et al. [361, Baron et al. [37], and Kleinman

.t al. [ 8]). The main contribution of the modeling phase was the adjustment and the

modification of the CM to include the effects of G -stress on pilot performance. Az

major reason for using the OCM as opposed to some other human performance model, is

that the parameters of this model are descriptive of human limitations. Thus, they

have shown a remarkable invariance over different task specifications, input distur-

ban, or commands, and controlled-vehicle dynamics. It therefore follows that

changes in the "nominal" OCM in a sustained acceleration environment are induced

almost entirely by the (; stress.
z
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Modt~i r A~ra c h

I , ,,,,w,; the id 'ul : c t . 0(CM. TI,. vl!i( It dynamics are

A tt A C, (t ) h u( t + I.,wC t ) + , it

v/i.) = ( t) + (I r(t ) (1.3)

w'.ere . 't) iz .S1all v a1 whitC-Gauss;iin disturban(L, with covariance W and

,. _ , _ ._rr..nit i, vehicle vrajLi.. [he displayed information v(t)

nt'<-k', erjr e(t) iid erior-rate (t), as we1l as other auxiliarv

vario oles :rid their rate of change.

The visual assumption in the 0CM is that the human perceives a delayed and

noisy replica of y(t), viz.,

V (t) = y(t-T) + v (t-t) (1.4)
-P - .-y

where the white-Gaussian observation noise v yi(t) of the i-th indicator has

covariance

V y(t) -0 ti-) E'y 2(t)I
yi f(t)N(a .)

In these equations i is the pilot's lumped time-delay, i) . is the observation

noise/signal ratio, fi(t) is the fraction of attention the human is allocating

to each observation , and N(ai) is the equivalent "gain" of the visual/indif-

ference threshold a.. The gai, N(ai) is obtained via statistical linearization

derived from Random Input Describing Function Theory, and is also a function of

the mean and the standard deviation of yi(t).

Assuming that the system state estimate, k , is given, then the human-O

devetops an optimal control strategy by minimizing the quadratic cost functional,

t Total attention fTOT is assumed = 1. This is subdivided across axes of control, and

further subdivided among instruments per axis.
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J(u) = Tim E (Y'(t)Qy y(t) + g 2 (t)) dt (1.6)
T -,T II

where Q = diag (qy) ae the relative weightings on the observations and g
Yt

is the control-rate weighting . Usually, the tracking error weighting co-

efficient, qe2 is non-zero, since the objective is to minimize the observed

error. By augmenting the state estimate with the control u, viz.,

[25 (1.7)

U

this stategy results in the optimal control gains, L,, arising from the

pertinent steady-state Riccati equation, such that

6(t x~,o -L'(t)-u

If we define L I = [T L , L' and include motor noise in the pilot's
N-opt

control, the optimal control, u(t), obeys the equation

Tt6 + u -L' A + v (t) = u (t) + v (t) (1.8)
N -opt-o u c u

or with L' Et' o10]- L-optJ

iN + u =L'x + v (t) = u c(t) + v u(t) (1.9)

The parameter T N can be interpreted as a "neuromotor" time constant. Usually,

is specified and g is adjusted accordingly, as there is a one-to-one

correspondence between the two.

The motor noise v (t) is assumed to be white and Gaussian with covariance

We assume that the subject seeks a control strategy that would minimize control-

rate rather than control.
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that scales with the covariance of u(t),

V (t) = 'r cov [u(t)]. (1.10)
U U

The coefficient p represents the motor-noise/signal ratio.u

Next, it is necessary to examine the other blocks of the human information

processing unit (Figure 2). That is, howdoes the subject estimate the state

R(t-T), and how does he predict R(t) from -R(t-T). The augumented state

x'(t) = (x'(t), u(t)] obeys now the differential equation

k(t) = A x(t) + bu (t) + Ew(t) + Fz(t) (1.11)

where

A={ - N-l] ' --= -N E = [ - -li] = H (1.12)

and w(t) with the covarience W -1-0 (1.13)

It is not difficult to show, that

t

R(t) = e x(t-T) + e A(t-a) bu c (a) d(

t-T

In Equation (1.14 the subject will use the estimate "(t-c) p(t). This state

estimate is obtained from the Kalman filter, via

(t) = Ap(t) +bu Ce(t-T) + C(t) [yp(t) - Cp(t)] (1.15)
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where

2(t) = E x(t-T)y (a), aGtJ (1.16)
-p

The filter gain G(t) is

G(t) = E(t)C'V (t) , V (t) = diag [V y(t) (1.17)
y y yi

where E(t) is generated from the solution of the Riccati equation

= AE + EA' - ZC'V- 1C + EWE' + Wd(t) (1.18)
yd

Three observations should be made with regard to Equation (1.18).

1. The matrix Wd(t) is a "pseudo-noise" covariance matrix and arises from
the deterministic signal z(t). It is chosen in such a way that the
filter adapts to the changing characteristics of the trajectory z(t).
At present,

W (t) T F z2 (t-T)F' (1.19)Wdt =cor -

where r is linked to the human short-term memory, or alternately,cor

is dependent on the z(t) profile's bandwidth.

2. In the absence of the deterministic target motion, Wd(t)=0 and i=O.
That is, the steady-state Riccati equation is solved.

3. In the case when the noisy disturbance w (t)=O, the term EWE' becomes

0 10

2 (1.20)0 'r N-2V
U -

1.4.2 Model Application

Basically, modeling efforts utilizing the OCM can be approached in two

ways:

1. Time-varying (nonstationary) mode

2. Steady-state mode.
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1,.4. 1. _ N.nsta:t i o natyMotd,'•

In the time-varying case, the targot's puofile is determin;stit,

i.e., z(L)4O and w (t)=O, l'h[s rodei j Li Ci x ' ye:I

comik i son of P~pe-i I ',ntao .-d Ji

LO de\,t _ tIu Li- Irocess me.-rn anni (.oVc.t t:. io, u, Lions 'l if.

at :se from tn*'. oloi;-:.ind:'.; n~ib).E4r,11C' a . . ..- -, .:. 10050

equat ions have been thor,,UgnlV dourmented Ve ,. .[ 3d

the basic continuous time equations are repeatec hicr, -a-t:,-L -. ',I fs" for

completeness.

If one define.s

k E(R)

e (t) = x(t-r) - p(t) = filtering error ;e = E(e ) (1.21)

e2 (t) = x(t) - k(t) = prediction error ; 2 = E(e2 )

,y =E (y)

then the process mean and covariance are computed from the following

time equations:

eAT

R(t) A R(t) -G C e1(t) A A-blU Z e G (1.22)

el(t) = A e (t) + F z(t) ; A A-GC (1.23)

-e2 (t) - e A(t-) F z(a)do ; (1.24)

- AT

x(t) = (t) + e eI(t) + e2 (t) (1.25)

1(t) = Cx(t) (1.26)
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The boundary conditions are appropriately chosen at time t=T.

Next, if we let X, E1 , E2, X and Y be the covariance matrices of

e , -e.2. x andy respectively, and

M(t) =_ E l(ic(t) - -;(t)) (e ,(t) - e, (M) cross covariance, (1.27)

one can show that

V V

X(t) X(t) + eAtM '(t) + M (t)eA + eA EIt)eA + E2 (t) (1.28)

t/
E2t) eA(t - a) [EW(o)E' + Wd(o) eA' (t-o) do (1.29)

M(t) AEI(t) + E I(t) + GV (t-T)G' + EW(t-T)E' + Wd(t-T) (1.30)

t AM(t) + M(t)A' + c [E IW)- Y (t) (1.31)

A!

X = AX + XA'+ GCM(t) + M(t)C'G' + GV (t-T)G (1.32)Y

Y = CXC' (1.33)

Notice that since we assume in this case w (t)=0, the matrix W(t) is a
0

-1
zero matrix except for the lower right lxl corner entry which is TN V ut)

(see Section 1.4.1).

1.4.2.2 Steady-State Mode

In the steady-state mode z(t)=O, and the target input is driven

by a stationary colored noise. The usual practice is to describe the

disturbance w (t) as a white-Gaussian noise, and to augment the system

with the dynamics of a noise shaping filter that chara terizes the

driving noise. The stationary approach is most suitable for frequency

domain analysis of human response. The model equations are represented

in the frequency domain, so that various performance measures can be
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predicted. The model outputs include any of several possible describing

functions associated with the subject, the vehicle, or the overall

closed-loop system. Also available are power density spectra of any

pertinent system variable that show both correlated (i.e., input-related)

and remnant (i.e., human-related) components. In addition, the perfor-

mance scores (RMS values) are predicted. Among the quantities that are

considered in the present study are

1. Pilot describing function,

2. Pilot control remnant, and

3. Tracking scores: RMS values of the tracking error and control.

This modeling approach is most suitable for model identification

from frequency domain data. The model is applied in conjunction with

fourier-transformed experimental data, and measures such as described

above can be compared.

The frequency domain equations are summarized here. A more detailed

theoretical background can be found in the literature (e.g. [41]).

We assume the model of Equation (1.11) with z(t)=0. All initial

conditions are ignored since steady-state situation is assumed. The

major transfer function of interest initially is that between y(s) and

u (s):

uc (s) = H'(s) I(s) (1.34)

This function is obtained by taking the Laplace transform of the equations

of Section 1.4.1. The following relationships result:

LH'(s) = [i + 1'(s-)] Le(As) (si -lG (1.35)

I(A-sI)T[~~- A slA + (sIA)i (.36
e (s-) (sl-A) + (1.36)
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The ov'era I II input-out put human trans fer function is thus

u(s) = -(s + TN ) H (s) y (s) _ 1'(s)Y(s) (1.37)

where we note that (s4r N) is obtained from the lower right lxI
c'orntr of (sI-A) Next, we also require the decomposition of all

closed-loop signals x, v and uC into their two major components. TheC

fitrst is that part linearly correlated with the independent input

disturbance w (t). The second is that part due to the human-injected0

rer nlrt c ald v . Th1s, with B4 [E' 0, we obtain

1(s) -- '(s)Cx(s)- H (s)v (s) (1.38)C - .-

x(0) (sI-A+bff C) - w(s' v s[-A+b)'C) -y (1.39)

v (S) = Cx(s) (1.40)

Following these equations the human transfer function of (1.37) can be

obtained. This describing function is of interest to us since it can be

measured experimentally. It is defined, relative to the disturbance

w (t), as a ratio of the transfer function between u and noise w to0

the transfer function between the observed tracking error e and noise

w . Thus

sT = 
e(s)/w (s)

0

To compute this human describing function we use

e(s) [ I -_A+bH, C)-(.

w (s) -

u u

-w-- - - --- , } - ( I A D c -~

It is recognized that v.(t) does not strictly have a Laplace transform. This,
however, is not a problem since we are interested in the uncorrelated spectra.
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The subscripts e and u in (1.42) indicate that the tracking error-

and control-related components of the describing function are considered.

Finally we require power spuctral densities of the variois variatiles

in the loop. These are obtained from Equat ions (1.38-i.40). t1or inv

signal the spectrum is decomposed into input and remnant related com-

ponents, (superscripts c and uc respectivelv) and the spectral densities

S(.) are obtained, viz.,

N
uc kv2 L,' I.3UCi.) V , jV.+(7)= 1 i l ki(J ) IV \, vi k l  L "V

x kik~k~

- ,jj )I (1.44 )t'a

XTT ( k

where,

xk = k-th state component

ki = ki-th element of (sl-A+bH'C)- bH

,-l -1
4 k = k-th component of (sl-A+bH C) bTN

N = number of observed variables (dimension of y(t))
y

= k-th element of (si-A+bH C)-- - -'0

Similar expression are easily obtained for Ic (w) juc(w) I() and

uc uc Yk" I Yk u

(i) The spectral density M () is of special interest in this

U u

study as it represents the human input-uncorrelated control. It will

be shown In Chapter I1[ that the magnitude of Iuc() in (-stress
U

conditions is significantly larger then It is in no-G situations. This
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is an excellent indicator of the human's motor randomness which increases

in the presence of sustained linear accelerations.

1.4.3 Model Development

The baseline model adopted in this work was, as noted previously, the

Optimal Control Model of human performance. The approach taken in the G-5tress

modeling process was to develop a "G submodel" that can be embedded in the

general structure of the OCM. The steps taken in this direction included a

development of technology to isolate and identify the effects on tracking

error and pilot control of target motion versus those associated with G-stress.

The effects of target motion were studies via static (no G) experiments. If

a pilot model is first tuned accurately to this case, then our hypothesis was

that anv data-vs-model mismatch in the dynamic-G tracking case is attributable

to the effects of the G-stress. The subsequent identification process to

model the mismatch consisted of four steps:

i. Sensitivity analysis: A comprehensive sensitivity analysis of

model to OCM parameter variations was undertaken.

2. Development of generic structural formulae that relate pilot para-

meters to instantaneous and/or antecedent load factor (G and fG);

3. a. Adjustment (tuning) of the free parameters within the OCM:

I, TN, ai, Qy i  and p1 ;

3. b. Tuning of the free parameters within thc structural submodels so

as to best match given data;

4. An identification program that performed the final fine-tuning

adjustments to the OCM and the G submodel parameters.

In addition to obtaining a performance model, this modeling approach provides

a potentially powerful method of obtaining physiological correlates of perfor-

mance under acceleration stress. We believe, therefore, that an ultimate
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modeling hierarch which defines in succession the functional relationships

between

1. Stress and physiology

2. Physiology and control parameters

3. Control parameters and tracking performance (via 0CM)

will provide maximal flexibility for future work. This hierarchy is shown

schematically in Figurc 4. It should be noted, however, that even a failure

to obtain the submodels of levels I and/or 2 does not hinder the general success

of such approach. This "robustness" of the technique is significant since

research in the area of modeling physiological factors has traditionally been

painfully slow and, to date, not very fruitful. It is always possible to

consolidate the first two levels into a single augmented G-stress-control

parameters model, circumventing the physiological variables altogether.

In the following chapter, the experimental and modeling phases of this

project are detailed.
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I. REPETITIVE - G -- NONSTATIONARY TARGET PROFILE

In the first year of the program, our efforts were directed towards analyzing

the Repetitive-C ensemble data, followed by the development of an ;nalytical model.

The Repetitive-G experiments were performed on the )ES facil ity at AMRL, and pro-

vided the data base for our nonstationary, time-domain. -Stress ljrformancu model.

2.1 ExKerimental Program

Repeated trials of a compensatory tracking task were performed on the DES it

Al/'R. The subjects were seated in the centrifuge cab and were instructed to trJk a

simulated, triangular-shaped target aircraft image that was displayed on a graphi;,

screen. The target motion followed a predetermined pattern in the longitudinal piin..

There was no target input in the lateral plane, but the operator had to corre(t hori-

zontal tracking errors that were induced by his own inherent motor randomness. Figure

5 shows the structure of the visual/motion loops. C (s) and G (s) represent tiltp r

controlled vehicle dynamics in the pitch and the roll axes respectively; these are

discussed later.

GI

.I DES
CONTROL I -TRS
60~)  Gz-SRS

HC NA TRACKING
MANIPULATOR IC H, ISPLAY' -OPERATOR ERRR ,

CONTROL

6a(t ) I

Gr(S)

Fig. 5 CLOSED-LOOP DYNAMIC TRACKING CONFIGURATION
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2 .L.l'-Jarget Profiles

The typical target maneuver in the longitudinal (pitch) plane is represented

in terms ot the induced vertical acceleration G T(t). Three dilferent target tra-

Jectories, employing trapezoidaly-shaped acceleration profiles were used;

(a) No Peaks: Shown in Fi,,Ire 0; runtime 103.34 seconds

(b) One Peak: Shown in Figure 7; runtime 121.33 seconds

(c) Five Peaks: Shown in Figure 8; runtime 260. seconds.

The target profiles are characterized by the following features:

1) Me peak ievels are. 7 C and are sustained for a period of 10 seconds.

2 here is a 10 second rest period (1.5G) between two successive peaks.

3) h. rate of on~set of (T(t) fro-m the 1.5G level to the 7G peak level is

j. 3 (;,'Sec.

4 There is a 90 second final period of a constant 4 G level plateau for each

of the three profiles. The subjects' performance was scored during these

periods only.

The profile GT(t) can be interpreted as "commanded-G" input to the human-

tracker. If the human operator (HO) were to track with zero error, GT(t) would

equal the acceleration forces he would experience. Acturally, the subject's

"attained vertical acceleration," GA(t), would be a filtered version of GT(t)

because of the lag inherent in the HO-System-DES dynamics. Since the aircraft's

attained G level is directly proportional to its pitch rate, one may envision the

simulated scenario as a pursuit-evasion task in a circular path with a changing

radius. The general equation that relates the aircraft pitch rate to its attained

G is given by
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Si,]. 6 PEAK PROFILE GT(t)

I

75 G/ e c ___

90 Sec
1. G

10 Sec

Fiq. 7 PEAK PROFILE GT(t)

7G 7 G

10 Sec
1 0 GSec 7 G, 4 G

90 Sec

1.5r, 1.5G

10 Sec 10 Sec

4x

Fig. 8 PEAKS PROFILE GT(t)
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Y(t) - + J (2.1)

g

where V is the aircraft's velocity (assumed constant) q(t) is its pitch rate, and

g = 32.2 ft/sec. The 1 accounts for the (fixed) acceleration of gravity.

2.1.2 Experimental Conditions

The major goal in the design of these experiments was to detect any perfor-

mance degradation under sustained G-stress. Therefore, two experimental conditions

had to be employed.

1. Static-g: The subjects tracked the target with the centrifuge at rest.

2. Dynamic-G: The DES was engaged in a closed-loop mode. The subject6,

responding to a pitch error stimulus, generated a command control input in

order to reduce the tracking error. By this action, they induced a positive,

time varying G stress upon themselves by increasing or by decreasing thez

angular velocity of the centrifuge (see also Figure 5).

Note that the roll error existed only in the visual loop and no off-normal

(y ) accelerations were generated by the pilot's roll commands.

As a consequence, a 3x2 factorial design was utilized. Each of the subjects

tracked three different trajectories, and each trajectory was tracked both under

conditions of "Static-G" and "Dynamic-C."

2.1.3 Subjects

The AMRL hazardous duty panel provided the personnel for these experiments.

Eight male subjects were trained, and each provided approximately six runs per

target trajectory per experimental condition.
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2.1.4 Aircraft Longitudinal (pitch) Dynamics:

The basic set of longitudinal equations being used for the attacker's air-

craft is the short-period dynamics. They are the pertubation equations written

about straight and level flight, 0 =0.
0

A = qA + Z acA + Z 6A  (2.2)

qA M + M. & + M q + M 6 (2.3)

A = qA (2.4)

Where eA is the attacker's pitch angle, qA is the pitch rate, aA is the angle of

attack and 6A is the elevator defection (all pertubation values). The normalized

stability derivatives, Z , Z6, M , M-, M and M are generally functions of the
q 6

nominal angle of attack ax and dynamic pressure. The range of validity of0

Equations (2.2)-(2.3) with constant parameters may be small, contributing to

modeling errors in an air-to-air problem. Also, the choice of equilibrium condi-

tion may vary.

In Equation (2.2) the parameter Z6 is usually small and sometimes neglected.

The same is sometimes true for M.. The analysis that follows will assume

M. = Z= 0 (2.5)

as this corresponds to the assumptions made in the simulations. It should be

noted that this does not compromise the results; non-zero choice presents no

analytic difficulties.
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The transfer functions qA/6A and aA/6A are, with Equation (2.5)

q M 66 - H~Zs - M z(2.6)
6A  A(s)

(2.7)

6 A  A(s)

where

2

A(s) = s - (Z + M q) s + Mq Z - M (2.8)

Acceleration Forces

The acceleration normal to the flight path due to an incremental flight-

path angle is

G = V YA (2.9)

where V = aircraft velocity (assumed constant) and yA (incremental) flight path

angle. Noting that

0A + Y =0A (2.10)

or equivalently

A = q A -aA (2.11)

and using Equations (2.2) and (2.11) one obtains

G = - V Z aA ft/sec
2  (2.12)

zcA

Thus, the transfer function G z/6A is

G Z M6
z V _____ (2.13)

6A  A(s)A 34



Vrom the transfer function parameters given in the HAC study, A(s) = s 2+9.9s+38

and

M= 11, Z = -25/11, V = 1000 ft/sec

M = -7.63, M = -20.66q

Geometric Considerations

Fi ,ure ) shows the geometry of air-to-air tracking in the longitudinal

plane. The variables with subscripts A relate to the attacker and those with T

to the target aircraft. There are no gunsight dynamics, i.e. the sight is fixed

and aligned with the aircraft body axis. For the case of gunsight lead, etc.,

see Harvey and Dillow [42].

T

A Inertial Reference

ET = inertial line-of-sight angle (equilibrium path)

ep = tracking pitch error = 0A - ET

r = aspect angle of target = 6T - ET

D = distance between the two aircraft = 1000 ft.

Fiq. 9 LONGITUDINAL TRACKING GEOMETRY
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Assuming VA VT = V and small (relative) angles it has been shown [42] that

V

= D (Y - Y (2.14)
'r D T A

for constant V and D. Since the explicit second order response of the target is

not important for modeling the attacker, we conveniently assume

qT(t) = z(t) (2.15)

where z(t) is a function of target profile as shown in Figures 6 - 8 and described

in Section 2.1.1. By referring to Equation (2.1), one may also recognize z(t) as

z(t) = & a(t) (2.16)
V T

2.1.5 Aircraft Lateral (roll) Dynamics

The lateral tracking task represents essentially a side-task as there are

no target aircraft motions in the horizontal plane. In order to model the lateral

task, the dynamics between aileron deflection, 6 a and tracking error, e , musta' r

be defined. The implementation of the lateral tracking task assumes the following:

I. Roll angle, 4, is small so that cosOZl and sinozo. This enables us to treat

the lateral and longitudinal modes as uncoupled. Moreover, the longitudinal

tracking task is not dependent on 0 in this case.

2. The attacker angle-of-attack "A and sideslip angle aA are negligible. Thus,

the attacker velocity vector is always aligned with the body axis. This

greatly simplifies the system representation in the horizontal plane.

3. All turns are coordinated, i.e. the G vector is aligned with the aircraft's

z-body axis.
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For a level, coordinated, turn

v (2.17)

and when the aircraft is pitching

= (q + V)  ; g = 32.2 ft/sec 2  
(2.18)

V

where ,, q, and V are aircraft heading angle, pitch rate and velocity, respec-

tively. By the above assumptions q y for the vertical axis, y being the

flight-path angle. Thus

(X + ) (2.19)
T T V T

and

- (Y +V) 'p (2.20)
A A V A

where the subscripts T and A again denote the target and the attacker, respec-

tively. Since we are interested only in the deviations between attacker and

target aircraft motions, it is covenient to consider an attacker-centered

coordinate system. Thus, we set T0 and PT=0. It is convenient to define

A

P =(P A - 0T = relative roll angle (2.21)

A
= 'P - PT = relative headings (2.22)

so that,

= (YA + V) ' (2.23)A V

The time-varying quantity YA affects the motion in the lateral axis. In fact,
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if we consider A = constant then Equation (2.23) represents a dynamic lineariza-

tion. In the present problem A is a random variable, with a mean and variance

that are functions of time. It is more convenient to use YT in Equation (2.23),

since this will be a "cleaner" signal. The approximation is valid to first-order

as (yT - YA z 0. Thus,

(Y + ~)~(2.24)

The next equation specifies the relationship between heading error y and

lateral tracking error e r(t). it is easy to show that

V
er =6 (2.25)r D

where D = distance between the two aircraft.

The final equation reflects the aircraft roll axis dynamics which is essen-

tially a roll-rate command system

T + = 6 a (2.26)

In the present simulations - = 5.55 , D = 1000 ft and V = 1000 ft/sec.

Equations (2.24)-(2.26) show that the response between 6 and e (t) is likea r

3I/s . This is a very difficult system for a human to control, depending on the

visual information. The block diagram of this system is shown in Figures lU.

2
Note that VyT + g is the target normal acceleration in ft/sec . For convenience,

this open-loop gain has been made into an equivalent gain K(t) at the input.

With these equations, the system description in both the longitudinal (C (s)) and
P

the lateral (r (s)) axes is complete.

38



(P r

a (t)...Kt $+l" er)

Fiq. 10 A 4th ORDER LATERAL TRACKING MODEL

2.1.6 Data Acquisition

The data supplied by AMRL consisted of the time histories of

1. Longitudinal (pitch) axis tracking error

2. Lateral (roll) axis tracking error

3. Commanded G (input to DES)z

4. Attained G
z

5. Pilot longitudinal-axis stick input

6. Pilot lateral-axis stick input.

These were provided for the 0-peak, 1-peak and 5-peak trajectories. Two

magnetic tapes were provided, one for each experimental condition (Static-G 
and

Dynamic-G).

The sampling interval in the real-time operation of the formal experimental

runs was 0.06 seconds. The data were collected every other time step, providing
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a sample of each of the six variables every time frame of 0.12 seconds. This

produced, for every recorded variable, the following:

1. 802 datum points in the 0-peak profile.

2. 1012 datum points in the I-peak profile.

1. 2168 datum points in the 5-peak profile.

The total number of complete runs that were suitable for reduction and analysis

was:

- Static Condition: O-peak , N=41.

1-peak , N=38.

5-peak , N=32.

- Dynamic Condition: 0-peak , N=37.

1-peak , N=36.

5-peak , N=24.

2.2 Ensemble Data Analysis

The raw data obtained on the DES, in conjunction with the repetitive-G tracking

experiments, have been analyzed via aggregation using an ensemble averaging method.

This has been done for subsequent model-data detailed comparisons, and for covariance

modeling modifications.

An extensive set of software was developed for processing the single-run data.

Tape conversion programs were written on UConn Computer Center's IBM 360/65 to read

the AMRL tapes and to rewrite them in a form compatible with our laboratory's DEC

PDP-1I system. The PDP-11 system was used for the averaging process, as it enabled

a hands-on, interactive analysis. Accordingly, programs were written for averaging

the data in a serial, or sequential, manner. In this way the editing, addition, or

removal of a single run could be done iteratively, without having to re-average the
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entire ensemble. This is an extremely useful approach for treating outlyer runs

not satisfying a t-test criterion. Specifically, the following equations were

employed to reduce the empirical data process:

1. The ensemble mean xk+l(i) of the i-th point of k+l runs is computed from

xk(i) by

Xk+l (i) = (xk(i)'k + xk+l(i)) / (k+l) (2.27)

where xk+l(i) is the value of the i-th point (t = 0.12i sec) of the (k+l)-th

run.

2
2. The ensemble mean-square xk+l (i) was computed similarly from

2 K~(i) 2x.() k + 2.K (1)) / (k+l) (2.28)

and the unbiased estimate of the ensemble variance, Vk(i), was then found in

the usual manner

vk(i) (1) _-2x1 (i)) k/(k-l) (2.29)

This, of course, resulted in the ensemble mean and ensemble standard deviation,

viz.,

N
x(t) (2.30)

k=1

N 1/2
a (t) N-[xl (t) _ x(t)]2 (2.31)

k=l

The resulting time histories are plotted as follows:

e Figures II - 12 : Mean and SD of Longitudinal Tracking Error,

Static-G, O-peak.
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" Fi ,ure s 13 - 14 Mean and SD of Longitudinal Tracking Error,

Static-G, 1-peak

* Fi!urs 15 - 16 Mean and SD of Longitudinal Tracking Error,

Static-G, 5-peak.

* Fi ,ures 17 - I Mean and SD of Longitudinal Tracking Error,

Dynamic-G, O-peak.

" Fi ures 19 - 2u Mean and SD of Longitudinal Tracking Error,

Dynamic-G, 1-peak.

" Figures 21 - 22 Mean and SD of Longitudinal Tracking Error,

Dynamic-G, 5-peak.

In Figures 23 - 29 only the initial 60-second period of the 1-peak

profile is considered.

" Figures 23 - 24 Mean and SD of Lateral Tracking Error, Static-G.

" Figures 25 - 26 Mean and SD of Lateral Tracking Error, Dynamic-G.

* Figure 27 Commanded G Mean, Static-G.z

* Figure 28 Commanded G Mean, Dynamic-G.z

" Figure 29 Subject-Attained G Mean, Dynamic-G.,

Notice that not all variables are plotted here. This is done mainly for practical

reasons. For example, the Commanded G for the 5-peak trajectory was an exact replicaz

of the 1-peak case. The SD of this variable is of no great consequence since it is

virtually zero. Also, the stick inputs in both axes were unreadable from the supplied

tapes. These variables, however, are of minor interest in the modeling process.

The next step in the processing of the ensemble data was statistical analysis.

Since the air-to-air experiments were performed under two experimental conditions

(Static-C vs. Dynamic-C), statistical tests had to be employed in order to detect any
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statistical difference among the ensemble means and variances. For convenience, only

the first 60 seconds of the I-peak trajectory are considered, but the results can be

generalized for the other target profiles. Tile following hypotheses were examined:

(1) Longitudinal tracking error ensemble means are equal under both experimental

conditions. (Welch-test ) (Figure 3U).

(2) Longitudinal tracking error variances are equal under both experimental

conditions (F-test) (Figure 31).

(3) Same as (1) for the lateral dajL (Figure 32).

(4) Same as (2) for the lateral data (Figure 33).

Application of the statistical tests and inspection of Fiures 30 - 33 unveils

the following:

a. We reject hypothesis (1). A comparison of Figure 30 with Figures 7 and

29 (target's G-profile (G T ) and attacker's attained C (G A), respectively)

shows that there is a significant difference (P<.05) between the means during

active GT (12-18th second of the run) and during high GA (around the 30th

second of the run) periods.

b. We reject hypothesis (2). It is evident that the variances are significantly

different (P<.05) during a part of the active GT period (11-16th second) and

during most of the period that immediately follows the peak C interval.

c. We fail to reject hypothesis (3). This result is obvious since there is no

target input in the horizontal axis. Also, the acceleration forces are

perpendicular to this plane.

tIn order to test the null hypothesis of equality of means, one would normally use
the t-test only when equality of variances is assumed. Ln our case, however, tile
null hypothesis does not assume to deal with the same population, since the variances

prove to be significantly different (see (2) and (4)). In such a case Welch test is

usually employed. In the event, both t and Welch tests gave almost identical results.
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d. We reject hypothesis (4) (P<.05). A significant difference between the

lateral tracking error variances is evident (Figure 33).

An inspection of the aggregated data indicates the following.

I. In general, the quality of the data is excellent. There is a sufficient

number of runs to form a "good" ensemble average. Moreover, unlike the

previous High Acceleration Cockpit (HAC) studies, the averages are relatively

mooth, tend to be more believable statistically, and provide a good corner-

stone for ;-modeling efforts.

Fhe G vs. no-(; comparisons of the longitudinal tracking errors and of the

standard deviations (e p(t) and o ept), respectively) show that the magnitudes

of e (t) are not very different. There is, however, an increase in a ep(t)

for the G-present versus the static runs. This is in agreement with past

acceleration research wherein performance decrements are observed with sustained

C-stress.

3. It is noted that the effective time-constant of e (t) in going from the lastP

7 G peak to the 4 G tracking phase is smaller in the static vs. the dynamic

runs. Thus, the time required for e p(t) - 0 is longer with the G-stress

present. Similar time-constant differences can be observed in the ep(t).

[his slower pilot response is again compatible with previous G-stress results.

rhe static tracking e data for the I- or 5-peak trajectory show a tendency
p

for the error to return towards zero immediately following a target pull-up

maneuver. Thus, the peak (negative) error exhibits a positive slope tendency.

[he same e (t) tracking data for the G-stress case show a diametrically
P

opposed trend! During the peak error period there is a further lagging

i i,i i:i the subject's rsponsu, i.e. the error decreases. This tendency was

56



noted in the earlier RAC data, but could not be confirmed as being statisti-

cally significant. Indeed, it was suggested by some that this tendency was

due to pilot anticipation of the target's upcoming pitch-rate reversal.

This explanation is not borne cut by the new data, however. As we follow the

ensemble average of e (t) through the 5 peaks this lagging tendency becomes
P

diminished. If there were pilot anticipation it should have shown up through-

out the run, nossibly becoming more pronounced on subsequent peaks. Instead

we see the opposite trend. It appears that the person may becoming "acclimated"

to the repetition of G-stress and local performance is improving. Put another

way, the degrading effects of the G-stress are possible being absorbed--the

pilot's G threshold might actually increase.

6. The results do not appear to be tainted by the lateral axis control tasks.

On the contrary: a valuable insight into the effects of G-stress on pilot

performance is gained by the inclusion of this secondary task. The lateral

tracking error means (e r(t)) are not substantial, which is natural as there

is no target input in this axis. The standard deviation (a er(t)) magnitudes,

however, are worth noticing. It is readily evident that a (t) in the G-er

stress condition is much larger. This is a testimony to the thesis that

there is a substantial performance degradation when subjected to sustained

G-stress.

7. It appears that the Attained G profile is a delayed and filtered version of

the Commanded G. This is because of the slow dynamics of the DES, which

can be approximated by a first order low-pass filter, with time constant - 4.5

sec.
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2.3 Modeling the Longitudinal Tracking Task

2.3.1 Application of the Optimal Control Model

The Optimal Control Model (OCM), modified to treat deterministic target motion,

assumes the system dynamics

x (t) = A x (t) + b 6A(t) + F z(t)

(2.32)

y(t) = C x (t)

where A ,b ,F and C are the pertinent system matrices, x(t) is the system state

vector, 6 A(t) is the elevator deflection and y(t) are the observations available to

the human operator (HO).

One of the difficult aspects of the modeling is the choice of state variables.

The criteria are

1. o and q for both aircraft should be retained as states.

2. The equations should be simple.

3. Other variables such as Gz , e p, r, etc., should either be states or linear

combinations of states.

4. No absolute (i.e. inertial) angles may be states

t5. The rates e and r should be combinations of states.
P

The last criterion indicates that a relative coordinate system is to be used.

After considering numerous possibilities, the following choices were made

t This condition is needed for subsequent pilot modeling.
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Il = q

x2 = T

x3 = A

(2. 33)
x4 = A

x5  A 8 T

x = e = A -
6 p A T

Differentiating these quantities gives

Xl =MT x2 + MT x1 + TOL q M1 T

Target dynamics

x =Z x + x
2 (X 2 1

MA = x + MA x + MA 8  '
3 A Attacker dynamics (2.34)

x AZ x + x
4 zi4 3 p

x5 = 3 x1

V
6 x3 + (x 2 - x4 + x)

The pilot observes the error e (t) and aspect angle r(t), plus their rates of change.
p

Therefore

= V

ep x3 + D (x - x + x
p23 2 4 x5

(2.35)

Y.3 r = T - " = x - x
T 'T 6 5V

Y 4  r 6 -x 5 =x + "(x2 - x4 + x5
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Also note that

Gz A = - V Z aA (2. 36)

in order to simplify the modeling process we sought a reduced-order version of

the model. Therefore we assumed that the attacker and the target aircraft flight

path angles, yA and yT' equal 0A and 6 V respectively. Note that in this situation

the state variables x2 and x4 can no longer be regarded as a A and aT' since, strictly

speaking, 'tA =  ° = 0. However, tht, 2:A order short period attacker dynamics remain

as in Equation (2.34). The assumption yA ( A modifies only the equation for x6'

V

=6 -Z =x -V(6  -0)
6 A T 3 D T A

(2.37)
V=x3 + V x53 D 5

The result of the target simplification is that state x2 does not enter the system

equations, except for the target dynamics. If the explicit 2nd - order response of

the target is not important for modeling, then it is convenient to replace the equation

for xI with

x = z(t) (2.38)

where x, = qT(=YT) and z(t) is the target's commanded flight path angle acceleration

(i.e. pitching moment).

Taking these simplifications into account and redefining states to account for

omission of x2 , we find
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|r

0 0 0 0 0 ( I

o MA MA o o MAq (I

o 1 zA 0 0 x + 0 + 0 z(t)
-. A

-i 1 0 0 0 0 0

0 1 0 V/D 0 ( C)

(2. 39)
0 0 0 0 l

0 1 0 V/D 0
y x

0 0 0 -1 i

1 0 0 V/D 0

These modeling assumption are in accordance with the simulation setup at AMRL.

There is a subtlety involving the vertical acceleration G : while it is alwaysz

true that Gz scales with YA' it will not scale with iA in this case. But since

A = qA' the vertical G force should be

Gz VqA (2.40)

Therefore, the vertical acceleration of the target aircraft -- in g units-- is

V I V V
G (t) Y - q = X (2.41)

T g T g9T g 1l

and the vertical acceleration commanded by the attacker is given by

G (t) = Y qA(t) + I = V x2 (t) + 1 (2.42)

Because of distributed dynamic lags, nonlinear effects, etc., the actual accelera-

tion, G A , attained on the centrifuge, and hence that felt by the pilot is approxi-

mately
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GA C(s) G', (2.43)

where C(s) 1 approximates the DES' transfer function.whereC~s) l+4.5s

2.3.2 G-Submodel for Longitudinal Tracking Task

The OCM assumes that the well-trained and well-motivated human operator adopts

an optimal control strategy, subject to his various psycho-physiological limitations.

The task of correctly specifying these limitations along with the resultant control

strategy is not always easy since they depend heavily on environmental and experimental

conditions. In the case at hand, the environmental condition is the level of G-stress

the human is subjected to. Below we describe the major human limitations that are of

concern in our modeling efforts.

Operator Time Delay: The various internal time delays associated with visual and

central processing are represented by an equivalent time delay, T. The sensitivity

analysis that preceded the modeling phase had not uncovered any particular trends

in the model predictions. It proved to be largly insensitive to this parameter. There-

fore, the nominal vlue of I = 0.25 seconds was chosen for the Static-as well as for

the Dynamic-G condition.

Threshold Effects: Nonlinear threshold effects associated with human information

processing are the visual and the indifference thresholds (not distinguished by the

model). We therefore associate with each displayed variable yi(t) a visual indifference

threshold level, a1 . Thus, the (delayed and noisy) perceived signal is

Ypi(t) - FlEyi(t-T) ] + vyi(t-[) i=1,2,3,4 (2.44)

where v yi(t) is assumed to be a white-Gaussian observation noise (see the following

paragraph), and the threshold function Fi(.) is
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Y Yi -

F (v) -ai i I  =1,... 4

Yi - ai a. < Y. (2.45)

Since y(t) is assumed (;aussian, we apply here the concept of the Random-Input-

Describing-Function (RIDF) to statistically linearize F(.) [431. The approximated

perceived observation is given therefore by

Vpi(t) NiYi (t-T) + v yi(t-r) i=1,2,3,4 (2.46)

where N = Ni(a i.yi, J .) is the i-th effective display gain, yi being E(yi) and

vi being v's standard deviation. The nominal values of a2 , a3, a4 were determined

from the experimental setup and the displayed target size:

a2 = 2mrad/sec, a 3 = 50 mrad a4 = 25 mrad/sec

In both experimental conditions these values remained unchanged. The choice of the

indifference threshold on the tracking error, al, was a more subtle task, and it is

discussed later in the section. It will be seen that aI is heavily dependent on

the G-stress level the tracker is subjected to.

Obsrvation and Motor Noise: The various sources of inherent human randomness are

represented by observation noise, v , and motor noise, v6. These zero-mean white~y

noises mainly account for errors in observing displayed variables and in generating

control signals. The observation and motor noise covariances are
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[(t) + i(t)]

Vyi(t) = PRyiY 1=1,...,4 (2.47)

V6 (t) = 0P cov[6 At)] (2.48)

where

Py(06) = observation (motor) noise ratio coefficient

f. = fractional attention allocation to indicator i
I

The nominal values for the noise/signal coefficients were

pyi = -21.5 dB i=1,2,3,4

06 = -18.0 dB

These values were applied to the Static-G condition. In the Dynamic-G, pyi remained

unchanged but the motor-noise ratio coefficient, p,, had to be increased by - 40%

(to -16.5 dB) to match the empirical data, yielding a 40% increase in the motor

noise, V5 (t).

Since there are four observation channels -- two for the longitudinal axis

(e (t) and r(t)), and two for the lateral (e (t) and p(t)) -- the fractional atten-

tions are assumed to be evenly divided among them. The result is f. = 1/4, which1

increases the effective observation noise by 6 dB.

One may notice that in all the covariance propagation equations of Section 1.4,

which involve V = diag [Vi], (Equations (1.18, (1.30) - (1.32)), only C'VI C
y yi y

appears. If we let

N - diag (N1 ) (2.49)

and

V t) = col [Vvi (t)1, (2.50)
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then Equation (2.46) becomes

p (t) = NCx(t-T) + v (t) (2.51)p -y

It can be seen, therefore, that the matrix C has to be modified to NC. We preferred,

however, to modify V viz.,
y

V-i -
I N'V-IN . (2.52)

y y

The mathematical equivalent is,

Ypl(t) =yl(t-T) + V yi(t) (2.53)

-2 2

Vyt) [yi) ) + a Yl (2.54)0yi f N2
1 1

which corresponds to Equations (1.4)-(1.5). This interpretation of the visual channel

is very significant. The net effect of the nonlinearity-equivalent gain Ni is to

increase V (t), since from RIDF theory, 0 < Ni < . In fact, Ni decreases with

increasing threshold level ai. It will be seen that the tracking error indifference

threshold, a1 , increases with G, thus decreasing Nl(al), which in turn increases the

observation noise covariance of the tracking error, V p(t) = Vyl(t).

Neur,,mtor Time Constant: Although it has been found that the model is quite

insensitive to variations in the neuromotor time constant TN, we have chosen to

adopt the values of TN = .18 sec for the Static- and T = .2 sec for the Dynamic-G

condition. This parameter, which governs the first-order lag in the human control
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;echanis:n, has proven to be a key parameter in the steady-state G-model (Chapter 1II).

A similar difference in the time-constant values between the two experimental condi-

tion was identified there.

Contra 'Jains: In computing the optimal gains adopted by the human, we minimize the

following cost functional,

T1 f 2 *2

J(6A ) = Lim T E, [qe e(t) + q (t) + g ;A(t)] dt (2.55)

0

where q., qe and g are the (constant) weighting coefficients. The control rate

weighting g is completely determined by the choice of TNo but qe and q are subjective

and represent the operators control strategy and error tradeoffs. We assume qe=q =.l

in both conditions since in the longitudinal tracking task the subjective importance

of the pitch error rate is no lesser than that of the pitch error.

In the Repetitive-G experiments, there were two major factors that influenced

the performance of the subjects:

(1) The specific instructions and training that guided the subjects in their

task;

(2) The attained positive acceleration (GA) which resulted from tile commanded

input signal (G ).
A

It is clear that coaching the subjects to adopt only certain prespecified control

actions, and/or constraining their permissible command levels, should profoundly

affect tracking performance. This was demonstrated by Brown and Collins [261 in

experiments whereby subjects were required to perform a tracking task similar to

ours. Prior to certain runs the subjects were instructed to fly the simulated air-
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craft in a coordinated fashion, i.e., to maintain lateral acceleration at a minimum.

The results proved that there was a significant difference in performance between

these runs and those not preceded by the specific instructions.

The effect of such instructions is reflected in the human's control strategy,

i.e. in the weightings in the cost functional J(.). In our experiments, the subjects

were instructed (and trained) to track well, i.e., to minimize the tracking error,

but only during the last stage of the run, namely, from the onset of the 4 G stress

period. The subjects were scored only during the final 90 second period of the 4 G

plateau. Precediic the 4 G period, the subjects were instructed to merely "keep the

target on the screen."

One might well conclude from this experimental setup that the subjects' error

indifterence threshold level, al, was changing during the tracking period, and that it

had a profound effect on the relative error/error-rate weightings in the computation

of the optimal gains. One plausible error threshold time history is shown in Figure

34. ivure 34 refers only to the 1-peak trajectory but similar threshold time-

histories may be used for the other trajectories. During the first tracking interval,

a I(t) thi = maximum angular error that corresponds to the graphics' total screen

size = 150 mrad. During the GT =4 G plateau al(t) = th = minimal threshold level

inherent to the human, and dependent on the size of the pipper image simulated on the

screen (= 20 mrad). We assume that the threshold changes gradually around t = 305

sec, where GT decreases from 7 to 4G. These assumption were applied, regardless of

the experimental condition (i.e., for both Static- and Dynamic-G).
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With the above in mind, coupled with Equations (2.46) and (2.55), we replace the

displayed pitch error e p(t) in the cost functional J(.) with the perceived error,

namely,

e p(t) - NI[a (t), e p(t), ep (t)] e p(t) (2.56)

where

ep(t) - y_1(t)
(2.57)

O ep(t) - Oyl(t)

Thus, the cost functional to be minimized is now

- tim { T (q 2 e 2(t) + q; 2 + g 42 dt (2.58)
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The error rate display gain is not included in J'(-) since we assume that the error

rate threshold level, a2 is negligible (= 2 mrad/sec) and time-invariant. This

approach of weightings modification in the cost functional has been originally

suggested by Kleinman and Baron [43], and it extends the preliminary modeling efforts

of Korn et al [44].

One may argue that this approach has an inherent serious drawback. Since a1 is

now time dependent, the error weighting would vary in time which in turn implies that

the optimal control gains would have to be computed continually. This would not be

feasible. However, it has been found that only the error (x5) gain depends strongly

on the error weighting, and the remaining gains are virtually unaffected. With this

fact, a functional relationship between the error gain and the error weightin,. has

been found, and successfully applied.

The indifference threshold on the observed tracking error is further affected by

the G-stress. We postulate that the human would tend to decrease the importance he

assigns to the tracking performance when subjected to sustained physical stress.

From Figures 17 - 22 it is apparent that the subjects exhibited a lagging tendency,

which increased during the peak-G periods. The hypothesis is, therefore, that the

acceleration stress would tend to increase the tracker's indifference threshold

associated with the tracking error. Alternately, he would become less indifferent

to his own psycho-physiological response.

To incorporate this threshold effect in our G-model we adopted an ad-hoc formula,

such that,

al(t, GA) a a(t) [1 + 2g-max (0, GA - Gmid] (2.59)
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where GA = GA(t) is the subject attained G; (Equation (2.43)) and (; = 4g = minimalA Az mai

G;z level, below which human performance is assumed not to be affected significantly.

(We assume, ot coursc, that the subject is wearinga ;-siiit). The vilue of the parameter

that gave the best data-model fits was pg .5.

The effect of the increase in aI under (; -stress is twofold:z

I. The equivalent display gain, N1 , decreases under G-stress, further reducing

the effective weighting on the tracking error, while the error-rate weighting

remains unchanged. This, in turn, reduces the control gain on the error that

is computed from Equation (2.58).

2. The decrease of NI increases the effective observation noise covariance

associated with the pitch error (V (t)) as can be observed in Equationep

(2. 54).

2.3.3 Modeling Results of the Longitudinal Tracking Task

A good performance model is one that satisfactorily validates experimental data

and can be applied reliably in a predictive mode. Moreover, it should be applicable

to a wide range of manual control tasks. The OCM has proven its ability to model

the air-to-air compensatory tracking task as demonstrated by the excellent data

matches that follow.

In order to demonstrate the model predictions of the pertinent variables, we

consider the 1-peak trajectory as a representative case. The 0-peak profile is of

no real interest because of a limited target maneuver and the low G levels, and the

5-peak profile is basically a replica of the 1-peak as can be observed from the

ensemble data. Moreover, most of the final period of constant 4 G can be discarded
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since it is a period of zero q(z(t) = 0). Therefore, it is sufficient to consider

the first 6(- ;econd period of the 1-peak profile, in order to illustrate our modeling

results.

In the following discussion we present the model prediction time histories.

These are followed by figures which show the model-data comparisons.

* f .,r, s 35 - 36: Mean and SD of tracking error, Static-G.

* 1 i,ircs 37 - 18: Mean and SD of tracking error, Dynamic G.

- [- 1'r , 39: Commanded-G, Dynamic-G condition.

* Figure 4u: Attained-G profile.

Comparisons:

* iv.irt. 1: [racking error mean, Static-G.

* Fi vur t - Y acking error SD, Static-G.

" Figure 43: rracking error mean, Dynamic-G.

* ;1gure 44: Tracking error SD, Dynamic-G.

" iure 45: Commanded G, Static-G condition.

* i gure 46: Commanded G, Dynamic-G condition.

2.3.4 Discussion

The data-model fits are excellent. It should be emphasized that the base-line

OCM parameters were unperturbed from their nominal values in the no-stress condition.

Only in the G-stress situation was it necessary to formulate a G-submodel. To

recapitulate the C-stress performance model, the model predictions have to be

expounded:
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(1) One can observe a slower recovery of the tracking error during the transition

period between the 7 G peak to the 4 G final plateau, when under G-stress.

This model prediction is attributed to the increase in the indifference

threshold on the tracking error, a,, in the Dynamic-G condition. The major

effect of increasing a1 is to decrease NI(al), which in turn decreases the

relative weighting on the tracking error in Equation (2.58). The resulting

feedback gain on the tracking error is lower in magnitude, allowing the

introduction of larger tracking errors, thus permitting a slow error recovery.

Notice (Iivure 40) that the peak Attained-C level occurs during this transi-

tion interval.

(2) A secondary effect of the increase in a1 under G-stress, is to effect higher

observation noise V (t) (Equation (2.54)).ep

(3) Another indication of performance degradation under G-stress is larger

standard deviations of tracking error. This is demonstrated in Figure 38.

The model predicts a larger and persisting tracking error variance in the

Dvnamic-G condition, which is attributable to higher motor-noise. Indeed,

a 40Z higher motor noise (p, = -16.5 dB in Dynamic-versus p, = -18 dB in

Static-G) was necessary to fit the ensemble tracking error SD. (From the

covariance propagation equations of Section 1.4, one can see that increasing

the motor-and/or observation noise results in higher variances.)

The modeling assumptions prove to be in excellent agreement with past C-stress

performance research, as summarized in Section 1.2. Virtually all of these efforts

conclude that the performance decrements are ascribed to larger motor and observation

noises, as well as to such psychomotor response as tolerating larger tracking errors

when operating under sustained acceleration stress.
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2.4 Modeling the Lateral Tracking Task

2.4.1_ Application of the Optimal Control Model

Similar to the longitudinal tracking dynamics, the lateral task has to be

expressed in the state space,

0 (t) A x o0 (t) + b 6 (t)
--O o--o a

(2.60)

y(t) =C x (t)
0-0

where Ao, b and C are the system matrices of the lateral dynamics, x (t) is the

state and 6 (t) is the aileron deflection. Notice the absence of the driving termsa

w (t) and z(t). In accordance with the simulated roll dynamics as represented by0

G (s) in Section 2.1.5, we define the state asr

x e r (t) = lateral tracking error

x 2  er(t) = 1

(2.61)
x3 =K(t)

x = K(t)

it should be noted that these definitions are valid only when K(t) is constant or

slowly varying. This has been the usual assumption when considering time-varying

system parameters in pilot modeling efforts.

This 4-th order system can be reduced to third order by combining the first

order lag of Equation (2.26), (T s+l) -1,  "' the first order lag (IN 8+1)- which

is introduced by the neuromotor dynamics in the OCM. Thus we set
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T T + T T + (2.62)
Nequiv N N 5.55

in the subsequent modeling process, and the system then becomes

xl = x 2

x2 =x 3  (2.63)

x3 = K(t)6'(t)

where -"(t) = p, and x1l, x2, x3 are as defined previously. In matrix form, we
a 2

obtain,

010 01
= 0 1 x + 0 K(t) 6'(t) (2.64)

-o a

Note that K(t) enters only as a scalar multiplier on the control 6a(t). This

means that the control 6'(t) can be computed for K(t) = 1 and then adjusted for
a

arbitrary K(t) via inverse scaling. It will be seen that K(t) has an effect on

the pilot's additive motor noise. For notational purposed we define K(t)6 a(t)=u(t).

The observations that are available to the pilot to minimize lateral tracking

error are

Y, = X 1 = tracking error e(t)

Y2 = x2  = error rate, e(t) (2.65)

Y3 = x3/K(t) 
=  relative roll angle,

Y4 = u/K(t) = roll rate, 4



The observation y3 of roll angle is critical for the control task. If this inform-

ation is absent it is virtually impossible for a subject to control the K/s 3 system.

The rule-of-thumb control logic of "keep your wings aligned with those of the

target aircraft" is testimony to this fact. The information Y4 is not very impor-

tant here inasmuch as the control signal u(t) is essentially "known." It would be

of importance if the target aircraft were free to move laterally.

2.4.2 G-Submodel for Lateral Tracking Task

Similar to the longitudinal tracking task, our modeling approach was first to

isolate the G-stress-dependent OCM parameters and cost functional components, and

then to determine the structure of that dependency. Below we list all OCM parameters

and indicate how they are affected by acceleration stress:

Threshold Effects: The threshold nonlinearities were applied here in a fashion

similar to that of Section 2.3.2. The nominal indifference threshold values on

y2, Y3 and Y4 were selected from simulation considerations as a2 = 2 mrad/sec,

a3 = 5 mrad, a4 = 2.5 mrad/sec. These values remained unchanged in the dynamic condi-

tion. The threshold level on the observed lateral tracking error was chosen here, as

In Section 2.3.2, to reflect the pilot-adopted tracking strategy. In the nominal

static condition we select

t<t s aI(t) - th 35 mrad - maximum angular error allowable

t>t a1(t) = th 0 25 mrad pipper radius.

In the G-stress condition th = 50 mrad, and the value of th is unchanged. In the

presence of G-stress, there is assumed to be a further increase in the model's
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indifference threshold, viz:

2

al(t,G A ) = a l(t) 1 + P 'max (0, G A-G ) (2.66)

where Gmin = 4g and pg = .3 is chosen to match the a c(t) = ayl(t) data. The

rationale for this assumption is as before: under high G-stress the subject tends

to tolerate larger tracking errors. These, in turn, result in a lower relative

weighting on the error in the cost functional.

Observation Noise: This parameter was applied precisely in the same manner as in

the longitudinal case:

2o .

V-(t) = i=1,2,3,4 (2.67)
yi~ = i N i.Ni

The nominal pyI values are -21.5 dB as before, and fi = 1/4. Notice, however, that

the y, term is absent from Equation (2.66) as there is no target input excitition,

and, strictly speaking, yi = 0.

Motor Noise: In the Optimal Control Modeling process, the control 6:(t) is generated
a

as

'N i (t) + 6a(t) =L'(t)x(t) + v (t). (2.68)
N~qi a au

;he gains L(t) are computed via

L(t) - L*/K(t) (2.69)

where L* are the optimal gains corresponding to K(t) - 1. The quantity v u(t) is the
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human's motor noise. The motor noise consists of two parts: a purely additive com-

ponent v(t) and a multiplicative component that scales with the control '(t).
u a

'h us,

V (t) = I(t)v 0 (t) + ((t)S(t)i (2.70)u ua

where -(t) and v 0 (t) are assumed to be white and p (t) is a known time function that
u a

modifies the additive motor noise covariance (see subsequent discussion). Multiplying

Equation (2.68) through by K(t), noting Equation (2.69) and defining 6 (t)K(t)- u(t),

we obtain

x = A x + b u(t) (2.71)

u(t) + u(t) -L x(t) + p (t)K(t)v (t) + f(t)Iu(t)I (2.72)
N,equiv a u

rhus, the only effect of the gain K(t) is to increase the effective additive motor

noise component, the variance of which increases with K2(t). The motor noise

covariance becomes therefore

Vu(t)=V°(t)+rP (t)cov[u(t)]=p 2 ( tVK (t)V+p tcovlu(t)1] (2.73)
u u u a U U

where (t) is the motor noise/signal ratio, and Tro (t) is identified as the covariance
u u

of ,(t). The multiplicative part of the motor-noise scales with the effective control

u(t), which is convenient for modeling. The net result is as expected: A constant

motor noise input will have a greater effect on lateral tracking error during periods

of high pitch rate since the system sensitivity, K(t), increases as q = y increases.

In addition, one has to consider the crossfeed effect in the manipulator. It

Notice that an additive component must be assumed here, as there would be
no other excitation to the system.
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appears that during the "active" target maneuver intervals (i.e., when j;T = z(t)0),

the additive motor noise should increase. During these tracking pcriods, the pilot

conunands AC .75 g/sec 2 (see Figure 27, t_[l0., 17.34] sec and t.[27. 34, 31.341 sec).

Because of this longitudinal control-rate, some additive noise is injected into the

lateral axis, introducing random lateral errors.

The above discussiun is relative to the interdependencies between the system

dynamics and the motor noise. The effect of G-stress on this motor noise remained

to be determined. In the course of the modeling work, it became apparent that model

predictions were quite sensitive to variations in p a and pu. Increases in these para-

meters greatly increased the magnitude of the model-predicted a (t). Large increaseser

in 3 er(t) are observed between the static and the dynamic-G conditions (Fivures 24,

26). We postulate therefore that G and/or G stress increases the motor-noise. In

a previous effort to model pilot performance under vibration stress, Levison [44]

also needed to increase the motor noise to match the data. Although vibration is a

form of physical stress different from sustained acceleration, it is possible to

extrapolate from Levison's results to our study. The following approach was taken.

I. The nominal value of p = -18.0 dB. In the dynamic conditions we select

o = -16.5 in accordance with the longitudinal tracking task model.

2. In the static condition the nominal value of V0 = 1. (rad/sec)2 was chosen
u

on the basis of the manipulator dead-zone characteristics. In the dynamic

conditions Vu = 2. The value of pa is nominally selected as 1.
Ua

3. Because of the crossfeed phenomenon we increase the motor noises at the times

for which z(t)0O. This is illustrated in Figure 47. Basically, pu remains

unchanged in the static condition but it increases to -13 dB under G-stress.
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in the static condition we Set Pa 3 and in the dynamic P. = 10. These increases

rul'l.t nine -and 100 -times higher levels of V 0(t),respectively (see Equations 2.72

and m ). ria- indicates, perhaps, that sustained acceleration stress enhances the

manii ~uI ator crossfeej effect.

ie apr)c taken here modifies somewhat the prelimiary model of f45).
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I I - -

V:.' ,2d , " ' "s; , mr .: t The model was found to be quite insensitive to variat i()n

in the neuromuscular time constant, fN  l'li. ut I.cive time ,onstait used in this

study was

N,equiv. = N + = .3 suc.

2,'"o)rrzcg. i x The optimal control policy is that which minimizes the cost

funct ional

J(u) = eim Ef [qeN (al)er(t) + qp 2 (t) + gu (t)I d) (2.74)

This is in accordance with the assumption that the subject wcighs tiu perceived, rather

than the displayed, error. The weightings that were chosen to obtain the optima]

control gains were q. = .01, q= .I in the static condition, and q = .01, q .25

in the dynamic one. Notice the much higher p(t) weighting which indicates the higher

relative importance of the roll angle in the control. Also, it is evident that under

G-stress the relative weighting on e (t) is lower than in the static condition (.01:.25r

vs .01:.l). The net effect is similar to that of increasing the indifference thres-

hold: both decrease the control gain on the error, thus generating higher Yi (t).er

2.4. 3 Modeling Results of the Lateral Tracking Task

An excellent indication of performance degradation under G-stress is the higher

magnitude of ,3 er(t). We observe that a er(t) in the Dynamic- condition is about 60

miliradiands during the peak G period, whereas in the Static condition it is about

30 mrads. The model reproduces these trends; the model ing rUsults are ill ustrated in



Fi4urs - 51. (All figUres relate to the first 60-second period of the 1-peak

t. r/,.-t prto,-i It.)

" ,,Imr, m: SD of tracking error, Static G.

* wit1r' 49: SD of tracking error, Dynamic-G.

* i'ures Do - 51 illustrate the model-vs-data comparisons of o (t) under
er

the two conditions.

2.4.4 Discussion

It is quite evident that the model reproduces the experimental data very well.

It should be emphasized that no modifications to the OCM nominal parameters were

necessary in the static condition. This reaffirms the validity of the OCM when

nominal conditions are considered. Similarly to the longitudinal task, the increase

in the model-predicted a er(t) in the dynamic condition is attributed mainly to the

increase in the human motor-noise, the lower error weighting in the cost functional,

and the increase in the tracking error threshold parameter.
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III. FREQUENCY DOMAIN MEASURES OF HUMAN PERFORMANCE ,Nh)ER (;- ;TRF:.

In Chapter II, the development of a" Time-0oma il" (;-'odel is di scoscs-]. % t hr',,h fhi,

performance model is success ful in the ;ense that it was vj I i:dt cd by th., -xptmrimet" taI

data, the information it furnishes is somewhat limited. It is intrins icaill i nap~alIt

of providing any frequency measures, such as power spectra, transfer functio ;, rem-

nants. In fact, this model is only effective in predicting i lot performance inl

the presence of transients in the target profile; steadv-stato anal's j is exclkid.d.

It was imperative, therefore, to build a statii onrv pterformaince moLdl th;t will

complement the nonstationary one. In this chapter, a sta,'-Sstato model 4'r pilot

performance under constant sustained-G stress is presented. The experimental program

leading to this G-model development is still in progress at AMRI.. Re ;ults; of the

initial DES runs have become available and they comprise th data bas(, for the

present model building effort. Three experimental conditions are emixploye'd, and

are designated as (1) Static (fixed-base), '2) Se:i-dyva.:nic .5 (; open-lIo p stress ,i:A

(3) Post-runs (static runs immediately following the semi-dynamic condition). The

control task is compensatory tracking in the lateral plane. The target input excita-

tion is a psuedo-random signal (sum of sine waves), providing, a rich set of measures

amenable to FFT analysis. This is discussed in detail in section I.]. The perfor-

mance model is based upon the Optimal Control Model (OCM). Section 3.2 describes the,

modeling effort.

The experimental data exhibit significant tracking performance decrements under

G-stress. The pilot's control remnant increases by as much as 5db at some frequencies,

and his tracking RMS error increases by some 15%. In ddition, the pilot's describing

function magnitude decreases by nearly 1.5 db, part icLilarly in til ot-rune ,,ndIt ion.

tThis Chapter is based upon a 1979 CDC paper [481.
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The model reproduces these trends quite well, by properly adjusting its parameters.

A discussion of the empirical and modeling results follows in Section 3.3.

3.1 Experimental Design

The constant-G experiments that provide the data base for the modeling effortz

reported herein were not designed as G experiments per se. In fact, they arez

embodied in a larger experimental program designed to investigate the combined G -Gz y

effects on pilots in the new Vectored Force Fighter (VFF) aircraft. The AMRL DES

centrifuge was the motion simulator used in these experiments. The subjects were

seated in the cab, which represents an aircraft cockpit, and was equipped with a

sidearm control stick. The visual tracking loop included a compensatory tracking task in

thu lateral plane as shown in Figure 52. The display included a stationary gunsight

reticle and a target aircraft, represented by a dot.

CONTROLLED VEHICLE NOISE SHAPING

DYNAMICS FILTER

2 1.7 w (t)t "

S IS S172 + S + 0 - w ~ )

s0 + . P(t) nt

CONTROLDIPA

u(t)DIPA 0 e 
0

4 MANIPULATOR - - HO 5q t)]

n(t) - target excitation signal w0 (t) - white driving noise

P (t) - vehicle pointing angle e(t) - trackinq error = n(t) - eP(t)

Fiq. 52 TRACKING TASK CONFIGURATION
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and solve the covariance equation

X A + A X + E WE =0, X =E{x x (3.4)
s ss -- s s --- S

we obtain W = .36, which corresponds to the specified u

The random signal n(t) was simulated by combining 11 sine waves into psuedo-

random forcing function,

11

r(t) = A i cos(w it + 0
') (3.5)

i=l1

for each run, the phases, 0i, of the sinusoids were randomized in order to eliminate

cognitive response, and the frequencies, wi, were chosen to span the range of the

human response (.15 * 15.57 rad/sec). The amplitudes, Ai, were selected to approxi-

mate n (w). A summary of the frequency components comprising the pseudo-random

signal is given in Table I. A detailed description of how to generate the approxi-

mated amplitudes can be found elsewhere [46].

No. Frequency (rad/sec) Amplitude

1 0.15 0.2376

2 0.38 0.2404

3 0.69 0.2023

4 1.00 0.1330

5 1.46 0.0854

6 2.22 0.0482

7 3.30 0.0259

8 4.76 0.0147

9 7.29 0.0081

10 10.51 0.0044

11 15.57 0.0025

Table 1 SUMMARY OF FREQUENCY COMPONENTS
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The VFF is designed in such a way that the pilot's lateral commands generate a

transient direct side force, i.e., a G acceleration. In order to simulate the desired
Y

G levels, it was necessary to centrifuge the subjects to an (almost) constant G ,

and to rotate the DES cab (in conjunction with the pilot tracking commands) to produce

an off-normal G component. The present study deals only with the constant G runs
z

(5 G level) and no G acceleration. The tracking task was designed to be used both in
y

the present constant G study as well as in future (closed-loop) G applications.
z y

This design constrained the driving signal and the plant dynamics to parameters

comensurate with the DES cab's bandwidth. The design specifics are listed below.

Target Input Excitation Signal: The target driving signal was chosen to be a second

order colored noise 9(t) with the power spectral density

nn() = .25W (3.1)
w + .25

and with the prescribed RMS value of O =lE[ I 2 .3. Such noise is normally generated

as the output of a linear time invariant system, T(s), driven by white noise w (t)

with Ew2 (t)} = W. For the given 4 (w), this system is

.5
T(s) = 2 (3.2)

s + s + .5

which is nothing but a Butterworth filter with a cutoff frequency of .707 rad/sec.

If we represent T(s) in the state space,

--s Ewo0tW = -s + EW (t) (3.3)
-S ' 5 15

n(t) = H'_ x = [1[0j] _ 
t
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,, Z, Vhiole Dynamics: The chosen plant had a second-order, overdamped trans-

fer function, which was dictated by the DES cab dynamics, viz.,

(s) 3.4 (3.6)(s+l) (s+l. 7)

R z Len ith: In order to comply with medical safety requirements, the run duration

had to be limited. A run length of 81.92 seconds was chosen; with a sampling period

of 40 msec, each run resulted in 2048 datum points, facilitating the FFT analysis.

fn4&, endent Vayiables: There were three experimental conditions (excluding the

Dynamic G case).
v

1. "Static" - The centrifuge cab served as a fixed-base simulator (no G -stress).Z

The subject's stick inputs effected a displayed tracking error with no

actual acceleration.

2. "Semi-dynamic" - The centrifuge cab served as a moving-base simulator. The

pilot nominal G level was 5 G. As in 1, the subject's control corrected the
z

displayed tracking error, but no off-normal accelerations were present.

3. "Post-ruus" - Same as 1, but these runs immediately followed condition 2.

Each session included two static runs, followed by two semi-dynamic runs,

immudiatelv followed by two post-runs. By this arrangement it was hoped to uncover

some of the sustained-, as well as the accumulative-G effects on tracking performance.

* ~. .2c~ons: Five subjects participated in a total of nine sessions. With two runs

per condition per session, 18 runs per condition resulted.
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Data Analysis: Numerous quantities, ranging from tracking error to heart rate time

histories were recorded, but only a subset of these quantities was required for the

performance model. The measurements that are of consequence to the modeling effort

were the tracking error, e(t), and the pilot stick command, u(t).

When analysing the experimental data, the following steps were taken:

i. The raw data of each of the indi"*'ual runs were transformed to frequency

domain via an FFT program, which produced the following quantities (evaluated

at the input frequencies):

(a) Ensembles of the individual power spectra of the tracking error, e(t),

and of the pilot control, u(t)(ee(w)and uu(w), respectively).

(b) The spectra (ee) and D (w) are given in two parts, the input -

correlated and the input - uncorrelated:

(De() = Po'e(c ) + Puc(
ee ee ee(w

(3.7)
D () = (Pc + Duc(
uu uu uu

(c) The cross-power-spectral densities of e(t) and of u(t) with the input

signal q(t) (De (jw) and lu(jw), respectively) were computed, and an

ensemble of the equivalent pilot describing functions, H(jw), (magnitude

and phase) was obtained

d1u(Jw)

H(jw) = (D (3.8)Sqe( )

(d) The pilot control remnant, R(w), was next obtained from the ratio of

)uc(w) t (LiM),
uu uu

ucM

R()= uu (3.9)

uu
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This quantity is crucial in any performance-modeling efforts. As

performance degrades under G-stress, it is reasonable to expect an

increase in the remnant's magnitude, indicating perhaps involuntary

motor activity. This, indeed, is the case in the present work, as

seen in the subsequent sections.

(e) In addition, the performance "scores," i.e., the RMS values of e(t)

and of u(t) (or alternately, the total power in tee (w), and uu(w) were

computed. These quantities prove to be indicative of pilot-tracking

performance, as they increase under G-stress, as might be expected.

2. The data were ensemble averaged, utilizing techniques similar to those of

Section 2.2. The final product was first- and second-order statistics of:

a. Pilot describing function, H(jw) (magnitude and phase),

b. Pilot remnant, R(w),

c. RMS scores.

These results are illustrated in Figures 53 - 61 and in table 2.

Discussion of the experimental, as well as the modeling results follows in

Section 3.3.

3.2 Modeling Approach

The base-line model adopted here was the "Steady-State" OCM, as explained in

Section 1.4.2.2. The system being controlled is described by the state space equation

x (t) = Aox (t) + b u(t) + E w (t) (3.10)
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01 0 0 0 0

1 0 0 x (t) + 0u(t) + w (t),
0 0 -1.7 1.7 0 0

00 0 - 2 0

whcr the tirst two states are associated with the input noise shaping, u(t) is the

pil Ut '-, control input and w (t) is a zero-mean white Gaussian noise., with
o

i.: w (t) w ;i)} = W6(t-o), W = .36 (3.11)

Thl, displaved variables consist of the paired tracking error/error rate, viz.,e1 0 -1
y(t) [ Co x(t) = [= x0 (t) (3.12)

0 1 1.7 -1.71

The OCM assumes that the well-trained and motivated human operator adopts an

optimal control strategy, subject to his inherent psycho-physiological limitations.

The mathematical interpretation of this statement is that the pilot, in the case at

hand, will minimize the following cost functional:

J(u) E Tim T (e2 (t) + g2(t)dt , (3.13)

where g is the relative weighting on the control rate. Obtaining the optimal control

law is accomplished by solving the steady-state Riccati equation pertaining to (3.13).

The well-known solution to this problem is

TN u+u -L x (t) + vu(t) (3.14)
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where -N is the human operator (HO) neuromuscular time constant, v (t) is ail additive
u

motor noise, L is the optimal control gains vector and x (t) is the estimated-opt -V

state. There is a one-to-one correspondence between q r and rN; usually the latter is

specified and q r is adjusted accordingly.

Human Liritations: The neuromuscular time constant, 1N, is just one of the OCM para-

meters that reflect the human inherent constraints. It represents the human's neuro-

motor bandwidth limitation in generating the control input.

Another human constraint stems from the fact that the human estimates the system

state on the basis of a delayed and noisy perceived information,

Ypi (t) = yi(t-T) + V yi (t-i) i=1,2 (3.15)

where

= human's lumped time delay,

v vit) = observation noise of the i-th indicator.

The observation (or sensor) noise v .(t) is a zero-mean, white Gaussian noise with

covariance

E {v yi(t) v yi(O)} = V yi6(t-a)

(3.16)

2Vyi = Pyi Efy (01,

and py is the noise/signal ratio of the i-th observed variable.
yi

The driving motor noise of Equation (3.14) is also zero-mean, white and Gaussian.

Its covariance is
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E{v (t)v (o)) = V 6(t-a)U U U(. 7

V 7P U Efu 2(t)} ,

where u is the motor nosie/signal. ratio.u

In the modeling work, rN' T, pyi, and Ou are of major interest, since these are

the only parameters that need to be tuned in order to match the experimental data.

A comprehensive OCM parameter identification program that was developed at the

University of Connecticut [47] facilitated this task. The application of this

identification procedure to the case at hand can be found in the Appendix. The

experimental and the modeling results are discussed in the following section.

3.3 Results and Discussion

Fivures 53 and 61 present the model-data comparisons for all three condi-

tions. The data are represented by the ensemble means and the standard deviations

at the input frequencies, and the model predictions -- by the continuous lines. In

addition, the predicted RMS control and tracking error scores are compared with the

experimental ones in Table 2. The following observations can be made, regarding

the empirical data:

Describing Function Magnitude: The highest magnitude among the three conditions is

observed in the static case. It is 0.5 - 1.0 dB larger than the magnitude in the

semi-dynamic condition, and 1.0 - 1.5 dB larger than in the post-run condition.

These differences are present at almost all input frequencies.

Describing Function Phase: Here, no significant differences are apparent among the

three conditions.
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'o~lt r r rnant: The most pronounced difference exists here. Whereas there is

hardly any difference in the remnant between the static and the post-run conditions,

the semi-dynamic case (G - stress, Figure 3.7) exhibits an increase by as much as
z

3 to 5 dB throughout the entire frequency range.

Trczi~ S~ Scorek,: Table 2 lists the empirical RMS values (+ one standard deviation)

of e(t) and of u(t) for the three conditions. The following observations are made:

1. The lowest RMS error value is in the static condition, and the highest--in

the G -stress condition.z

2. The lowest control levels were applied during the post-runs, and the highest--

during the G runs.z

-i iirus 53 through 61 show the modeling results, which are the major achievement

(, this effort. The experimental data validate the model in all three cases, through-

out the entire frequency range. Some discrepancies exist at low frequencies, between

the phases in particular: the model is unable to reproduce the phase droops below

0.7 rad!/sec. This has traditionally been the case in all past modeling works.

The model predicted scores match the experimental RMS values as well. The pre-

dicted scores, both error and control, deviate no more than half a standard devia-

tion from the ensemble score means.

Table 3 summarizes the OCM parameters that were identified from the data. it

is apparent that the operator's motor mechanism is impaired by Gz-stress. The

highest motor noise/signal ratio, p , was identified for the semi-dynamic condition.
u

The increase in p under C-stress is by as much as 4.5 dB. This result is in excellent

agreement with past psycho-motor research [13, 19], and may be attributed to a phenomenon

such as tremor. It is quite interesting, however, that the post-runs effect lower

moter noise.
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Moreover, the observation noise/signal coefficient, pe, under G-stress increases

from -19.6 dB to a level as high as -15.1 dB. This again is consistent with past

research concerning G-effects on vision. The increase pe may be accounted for be

decrements in visual acuity under G-stress, blur, etc., as reported by (iether [Q]

and many others. Alternately, this increase in ( can be ascribed to a decrease in

the attentional allocation or to an increase in the indifference threshold on the

observed error due to G-stress, or both. This is readily evident if we replace

Equation (3.16) with

e2
li e (t)}

v e (3.18)
e f -N

e e

where f < I is the fractional attention allocated to e(t). The terme -

N N [ae, E{e2(t)}] < 1 (3.19)

is a statistically linearized function, arising from a thresholded error observation

with threshold level a (see 143]). It has been shown [44, 45] that the error in-e

difference threshold is indeed affected by G-stress.

The trends in pe are not as clear as in e, but the model proved quite insensitive
Ce

to the former. Therefore, o* may be assigned a prescribed nominal value.

Another parameter which is affected by C-stress is the lumped time delay, T.

There is some increase in r in the semi-dynmic condition but it decreases slightly

in the post-run case. The increase in human reaction time under G-stress is again in

accordance with previous research (e.g. [131). The neuromuscular time constant, I W

increases both for G and post-G runs; this validates the hypothesis of accumulative

G -effects. This decrease in the human control bandwidth, combined with a significant
z
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decrease both in the describing function gain (Figure 59) and in control activity,

(Table 2 - post run condition), suggest a hystersis effect of fatigue induced by

an accumulated G -stress.
z

UABLE 2 - RMS SCORES

SCORES TRACKING ERROR, e CONTROL, u

(CONDITION EXPERIMENTAL PREDICTED EXPERIMENTAL PREDICTED

STATIC .093 + .014 .090 .37 + .10 .32

G -STRESS .107 + .015 .102 .42 + .18 .33

POST-RUNS .095 + .021 .088 .33 + .09 .29

Table 3 - MO)EL PARAMETERS

CONDITION

PARAMEETRS STATIC G - STRESS POST-RUNS

dB -17.5 -15.3 -20.1
U

dB -19.6 -15.1 -21.3

e()e dB -29.5 -30.8 -24.5

T , SEC .257 .266 .236

TN , SEC .159 .176 .165
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IV CONCLUSIONS

it has become a well-established fact that linear acceleration stress effects

substantial degradation in pilot performance. The results of the compensatory

tracking/sustained acceleration research program, jointly undertaken by Air Force

Aerospace Medical Research Laboratory and the University of Connecticut-CYBERLAB,

substantiates this contention. Statistical analyses performed on the experimental

data prove that significant differences exist between G versus no-G -stress condi-Z z

tions. The acceleration stress data exhibit trends which are clearly a manifestation

ol performance impairment:

I. The variability in the tracking errors increases significantly under Gz -stress.

This is demonstrated by high levels and enduring periods of tracking-error-

variance time histories, and by larger RMS tracking scores.

2. Pilot's involuntary motor activity increases in the presence of sustained

G -stress. The data show large increase in the input-uncorrelated controlz

power, and higher control RMS values.

3. It is evident from the data that G -stress effect slow tracking errorz

recovery and lower magnitude of the human describing function. This is,

perhaps, an indication of a lower control bandwidth on the part of the pilot

under positive acceleration stress.

The analytical phase, on its part, has resulted in a normative performance model

which has been validated by the experimental data. The model is based upon the

Optimal Control Model (OCM) and it has been augmented by a G-submodel to include the

acceleration effects. The model parameters, which reflect a person's inherent limita-

tions, depart from their nominal values to account for the performance degradation

under strenuous acceleration conditions.
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Virtually all the model parameters need to be perturbed in order to replicate the

data trends. It is shown that the model parameters which are affected are the observa-

tion noise, neuxomotor time constant TN, and reaction time-delay, all of which exhibit

a significant increase under G -stress. In addition, some accumulative G-effects arez

evident as TN remains higher than nominal in the post-C runs, reflecting a lower

control bandwidth, and perhaps fatigue.

The most noteworthy deviations from the nominal, however, are the increases in

the motor noise and in the error indifference threshold parameters. The first

results in higher control remnant levels and tracking error variances, which are

observed from the empirical data. The latter eficcts a slow tracking - error recoverv

in the closed-loop C-stress condition.

At present, we are pursuing a G -stress research program which is an extension of
Y

this study. The G program, in addition to lateral accelerations, involves positive
y

vertical acceleration stress of up to 5 G. As the experimental data of this program

become available, the performance model under G -stress may be refined further.
z
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APPENDI X

IDENTIFICATION OF OCM PARAMETERS UNDER (-STRESS

The application of the Optimal Control Model (OCM) to a manual-control task

usually involves matching model predictions to available experimental data. Tradi-

tionally, this has been done by tediously varying the model parameters until a

suitable model-data match has been obtained. In the past year, a comprehensive

Parameter Identification Program for the OCM (OCMID) has been developed [471. This

program provides an automated technology for the model-building process.

The OCMID is a modular computer package designed to identify parameters of the

OCM. User-supplied routines determine the parameters to be identified and the form

of the program output. The package is designed with flexibility to allow any routine

to be interchanged with user - supplied routines, so the package can be tailored to

specific needs. In conjunction with the present G-model research, the OCMID has been

extended with additional routines, incorporating a graphics display subprogram.

Approach:

The objective is to identify the pilot describing function (magnitude and phase),

the remnant, and the model predicted performance scores. The OCM parameters that

generate these predictions are to be identified from experimental frequency measures

data so as to minimize a weighted least-squares objective functional. The minimiza-

tion of this cost functional provides a scalar metric, which in turn, reflects how

closely the currently obtained model matches the measured describing function's

magnitude and phase, control remnant and performance RMS scores. We choose, therefore,

the cost functional
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m2

1 '1 e ) + q u,l= 2 Se U qso (A

N_ 2

[ M-- --- -- --- --- -- + q RI
i=[
= Mi / Pi( R Ri

s =RMS score of tracking error
L

s = RMS score of control inputu

Hij'.,) = Pilot describing function (a i-th input frequency

R ( .) = Pilot remnant (_ i-th input frequency1

=(. Ensemble standard deviation of the pertinent variable

(.) = Represents the OCMID current estimates

q(.) = Relative weightings (at present = 1.)

Nf = Number of frequencies = 11

The choice of this cost functional gives a weighted least-squares fit to the

data. Notice that each squared difference in J is divided by the appropriate ensemble

standard deviation. In this way, datum points with larger J( are automatically

given less weight.

The minimization of .1 is carried out by applying Powell's non-gradient optimiza-

tion method (49j. Basically, Powell's method finds pseudo-conjugate gradient search

directions by perturbing the parameters in the Euclidean space. A bivariate quadratic

line search is used to minimize J in each search direction, such that the parameters

"move" a step along each orthogonal direction. This means that in one Powell itera-

tion the parameters "move' along the average direction of all the individual orthogonal

direct ions.
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After the program has converged, a single quasi-Newton step is taken to ensure

convergence and to provide approximate confidenco intervals for the identified para-

meters. To see this step we rewrite J as:

NT

2 f, (6) 2 f(O)'f(f) (A.2)

i=l

where:

NT total number of the weighted squared differences

0- parameter vector to be identified

2
f = i-th squared termi

The quasi-Newton step is

= -REDO 1 - f^k (A.3)

where a is the one-dimensional line search minimizing element. In the case at hand,

NT = 2 + 3"Nf = 35

0' p (u, % , TN , )

and the f (6) terms are given by Equation (A.l). Note that the term inside the squared

brackets of Equation (A.3) is the approximated Hessian. The approximate confidence

interval for the identified parameter set is then given by the square-root of the

diagonal elements of the inverse Hessien.
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